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THE DEVELOPMENT OF A MIXING LAYER UNDER

THE ACTION OF WEAK STREAMWISE VORTICES

Marvin E. Goldstein
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Joseph Mathew
Institute for Computational Mechanics in Propulsion

Lewis Research Center

Cleveland, Ohio 44135

The action of weak, streamwise vortices on a plane, incompressible, steady

mixing layer is examined in the large-Reynolds-number limit: The outer,

inviscid region is bounded by a vortex sheet to which the viscous region is

confined. It is shown that the local linear analysis becomes invalid at

streamwise distances 0(c-I), where E << I is the crossflow amplitude, and a

new nonlinear analysis is constructed for this region. Numerical solutions of

the nonlinear problem show that the vortex sheet undergoes an 0(i) change in

position and that the solution is ultimately terminated by the appearance of a

singularity. The corresponding viscous layer shows downstream thickening, but

appears to remain well-behaved up to the singular location.

I. Introduction

Mixing layer flows being canonical and of technological importance have

been studied extensively over the years. In this paper, some new, three-

dimensional and nonlinear features are examined theoretically. We consider a

steady, incompressible free shear layer--two nominally uniform streams at

different speeds--and study the effect of small nonuniformities imposed on one

of these streams. The analysis is restricted to the asymptotically large-



Reynolds-number case for which the usual boundary layer approximation applies:

There is an outer, inviscid region with an infinitesimally thin vortex sheet

forming the interface between the two streams and an inner, viscous layer that

resolves the velocity discontinuity across the vortex sheet. (See figure I.)

We suppose, for definiteness, that the mixing layer forms downstream of an

infinitesimally thin splitter plate. The upstream base flow consists of a

uniform parallel stream and a second stream at rest in our reference frame.

The resulting vortex sheet is then a plane surface in the vicinity of the

trailing edge, and the relevant viscous problem admits a similarity

solution I'2 there. (For simplicity, we neglect the upstream boundary layer on

the surface of the plate.) We suppose that a small O(E) streamwise vorticity

field is imposed on this flow somewhere upstream of the trailing edge, where

<< i measures crossflow amplitude, and seek a series solution by expanding

in powers of E. The 0(() crossflow is convected without change, and the

vortex sheet remains planar to that order. However, the O(E 2) solution

increases linearly with the streamwise coordinate x as x becomes large, so

that the series is no longer valid when x is 0(1/_). A new, nonlinear

solution therefore has to be found for this region in order to obtain a

uniformly valid solution to the problem. A similar situation was found in a

study of flat-plate boundary layers subjected to weak nonuniformities in the

external stream. 3'4

As in Goldstein and Leib, 4 the nonlinear flow is governed by the two-

dimensional, time-dependent vorticity equation with an appropriately scaled

streamwise coordinate playing the role of the time. However, the situation is

now considerably more complex because the vortex sheet is displaced by an 0(I)



amount in the nonlinear region, and the vorticity equation therefore has to be

solved in a region of unknownshape. The problem is also similar to those in

Goldstein et al. 3 and Goldstein and Leib, _ in that the viscous shear flow that

bounds the nonlinear region is governed by the three-dimensional boundary

layer equations. However, these equations now have to be solved on a curved

surface, rather than on a plane surface, and this again makes the problem more

complex.

For definiteness, we suppose that the imposedspanwise sinusoidal

crossflow has the form of a pair of counter-rotating vortices per period,

which then becomedistorted as the flow evolves downstream. The numerical

solution shows that the vortex sheet grows monotonically until the

computations break downat (or near) Ex = 0.8. The relevant Fourier spectrum

suggests that this breakdown is due to the formation of a pair ot

symmetrically disposed singularities per period.

The breakdown is not completely unexpected, since the vortex sheet

boundary condition has the form of an inviscid Burger's equation, with some

additional terms arising from the vortex sheet development, and the Burger's

equation solutions are knownto becomesingular at finite downstream

locatior;s. The present problem also bears somesimilarity to the (temporally

evolving) Kelvin-Helmho]tz instability of a disturbed two-dimensional vortex

sheet, which is knownto produce a finite time singularity, s Krasny6 obtained

a numerical solution to this problem and found that whenthe initial

disturbance is sufficiently large, a pair of singularities ultimately form and

the attendant Fourier spectrum is similar to the one obtained in the present
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case. Krasny6 used an ad hoc approximation to extend his computations beyond

the singular time and found that the vortex sheet rolls up into a pair of

tightly woundspirals. Wetherefore expect that the vortex sheet will also

undergo spanwise roll-up in the present case.

The shear layer flow appears to be relatively unaffected by the vortex-

sheet distortion. The layer thickness does increase faster than the

corresponding Lock profile, but there does not seemto be any dramatic changes

as the singularity is approached. This mayreflect the fact that the

singularity is of higher order, i.e., it only appears in the higher-order

derivatives.

2. Formulation

Consider a uniform, parallel, incompressible, steady stream that slips

past a semi-infinite but infinitesimally thin flat plate with spied U®. A

Cartesian coordinate system is centered at the plate's trailing edge, with the

x-axis aligned with the main stream and y and z coordinates in the transverse

and spanwise directions, respectively. In the large-Reynolds-number limit

being considered herein, the undisturbed downstreamflow consists of an

inviscid parallel flow with a plene vortex sheet in x > O, y = 0 and a viscous

layer that resolves the resulting veloclzy dlscontinuity. Lock I'2 obtained a

similarity solution to the viscous flow. We suppose that a steady crossflow

disturbance of O(E)(E << i), with spanwise lengthscale Z, is superposed on

this piecewise uniform flow. All quantities are nondimensionalized using

appropriate combinations of Z and U®. The resulting Reynolds number



R = ZUJv, where v is the fluid's kinematic viscosity, is assumedto be

sufficiently large (R >> E"I) so that to O(E2) the outer flow satisfies the

Euler equations:

V'u=O ,

u.Vu+Vp = o , (l)

where u is the velocity, and p is the pressure. (The O(R "_) boundary layer

displacement effects can be incorporated into u if necessary.) The vortex

sheet, located at y = f(x,z), is a material surface and satisfies a kinematic

requirement that it move with the fluid velocity, which means that for the

steady flow being considered here, the component of velocity normal to the

sheet must vanish:

u'V(y-f) = O; x>O,y=f(x,z),-_<z<_. (2)

Also, the pressure must be con£inuous across the sheet in order to ensure that

it does not undergo infinite acceleration.

Since the base flow is zero in the region below the sheet, the

corresponding induced flow, if it exists, must be irrotational to O(E 2) and

therefore possesses a velocity potential, say @'. However, @" turns out to be

a constant, because it is an everywhere bounded selution to Laplace's

equation, whose normal derivative vanishes on the (stationary) vortex sheet

and plate boundaries. Hence there is no induced flow, the pressure is

everywhere constant in y < f(x,z), and the second boundary condition becom_

p=o; x> O,y=f(x, z),-_< z<_. (3)

The velocities and pressure must remain bounded at large distances from the

trailing edge, and the upstream initial conditions require

u" uo as x- -_, (4)



where uo(y,z) = (O,vo,Wo) is the imposedcrossflow.

sheet requires that

f_ af
aX - O; x=O,-_<Z<_

Continuity of the vortex

(5)

2.1. Breakdown of linear solution

Near the trailing edge, the dependent variables expand like

u(x,y, z) = (I,0,0) +e(u_,v_,w_) +e2(u2,v2,w2) +..., (6)

p(w,y, z) = ep_ +e2p2 +..., (7)

f(x,z) = ef 1+e2f2 +.... (8)

Substituting this into equations (I)-(3) and equating powers of _. we find

that the O(c) solution is fl = Pl : 0 and

{o,vo,wo},

while the O(e 2) solution satisfies

(lO)

8u_

ax +VP2 =- (u_-V) ul (1t)

subject to

Of 2 - O; x>O,y = O,-_*<z<_,
v2- ax

P2 = O; x>O,y = O,-o°<Z<°°,

(12)

P2 must remain bounded in the far field, and taking the gradient of

equation (11) and using equation (10) shows that P2 satisfies the Poisson equation



V_p2=-V- [ (u_ "V) u_] ,

while the y-component of equation (11) implies that

aP2 - O; x<O, y = O,-_<z<_.
ay

Once Pz is found from these relations, uz is a simple quadrature of (10).

(13)

(14)

It follows that

p2(x,y, z) -D_.(Y, z) (x-_), (15)

since both the forcing in equation (13) and the boundary condition (14) become

independent of x, as x _ m. Equations (10) and (11) imply that the

corresponding asymptotic behavior of the velocity and sheet displacement are:

u2 -- [(ui'V) u_+Vp2.]x

Op2. x 2f2--(u_-V) vI+--_- -_-

(x-_), (16)

(x-_). (17)

This shows that O(E 2) terms become comparable to the O(E) terms when Ex ~ 0(I)

and, therefore, that the expansions (6)-(8) are no longer valid in this

region.

2.2 Nonlinear inviscid region

To find an appropriate solution for this region (which will turn out to

be uniformly valid when x = 0(I)), we introduce the slow streamwise length

scale

= cx (18)



and seek an expansion of the form

u= l +e2U('_, y, z, ) +... v=e_,(_, y, z) +... w:e_(_, y, z) +...

f=f('x,z) +....

p+¢2F(_, y, z) +...
(19)

Substituting these into equations (I)-(3) and equating

ae÷a_ o
ay az

powers of _ gives

(20)

D-u:--_, D_ = _ a-p DQ = _ a-pay' az'
(21)

where

D - -_-_+'_ +W ,
(22)

and

a_ -a-f
_--_-w-_ = o;

m

X>0,y=0, -re<Z< °_, (23)

Matching with the

Eliminating p

where

m m

p = 0; x>0,y=0,-_<z< °:.

perturbation solution (6) of §2.1 requires that

9,_vo, wo as _-o.

between equations (21) and (22)yields

DCI = 0

ay az

(24)

(25)

(26)

(27)

is the streamwise vorticity. The simple (Prandtl)

y : y-f(_, z),

coordinate transformation

(28)



transfers the vortex-sheet boundary to the known location _= o.

vorticity transport equation (26) remains

D(} = 0

but now with

v

The

(29)

(30)

where

: 9-f_-Qfz. (31)

The kinematic condition (23) is now simply

-- m

v=0 at y=0. (32)

Equation (20) implies that there exists a crossflow stream function

defined by

V:_ a___ _=a___ (33)
az'

Inserting this together with equation (31) into definition (27) shows that

: "_zz+ (I + ?_ ) $_- _y?zz - 2$Tzfz - f_z"

Transforming the second two equations (21) via equations (28) and (31),

eliminating _ from the result, and using conditions (24) and (32), we find

that the latter two conditions imply

Do_+fzDo2f:0; at _'7:0,

DO--_+

where

(34)

(35)



Thus the problem consists of finding a solution to equations (25), (29), and

(33) through (35) that remains bounded at _-_.

2.3 Viscous layer

The vortex sheet discontinuity is resolved by a thin viscous shear layer

of thickness, 6 = (L/X)O(RL'_), where RL is the Reynolds number based on the

length L from the origin of the boundary layer, so that 6 = (ER)-_ when

We therefore introduce the scaled transverse coordinate, Y, defined= 0(I).

by

Then the streamwise velocity

_=6Y. (36)

u= u(_, Y, z) (37)

is 0(i), and the requirements of continuity and matching with the outer flow

are ensured by the scalings,

eSV = v-euf_-wf,, w = eW. p : e2P. (38)

Introduci,g these new scaled variables into the Navier-Stokes equations and

retaining only lowest order terms, we find

_U= (l+?_)Un, , (39)

(_÷_)_+ _.(_+ w_?_)=(_+_)2w_ , (40)

where

u_+vz+wz=o , (41)

The boundary conditions are obtained by matching to the outer flow,

10



u-l, w-w.- _(_,y = O,z)

u-o, w-o (Y--_) ,

(Y_=)
(42)

Equation (40) becomes identical to (35) when all derivatives with respect to Y

are set equal to zero, as required for smooth matching with the outer flow.

The initial condition is Lock's I solution which is valid for x = 0(1), i.e.,

for _- O.

3. Results

In order to be specific, we consider only the imposed crossflow

_= COZ Z sech _ tanh _,

w=-sin z sech _(2 tanh 2 y-l) ,

=-6 sin z sech _ tanh _(tanh 2 _-I) .

which is initially sinusoidal and decays exponentially as _-_. Both the

inviscid and viscous flow can be computed by marching downstream in _.

3.1. Inviscid flow

Since the initial crossflow was restricted to spanwise periodic data,

Fourier spectral methods can be used in spanwise direction, and we use second-

order, finite-difference formulae on uniform grids to compute streamwise and

transverse derivatives. The vorticity is obtained at each station _i by the

11



discretization of equation (29) according to the mid-point, leap-frog method,

which is explicit and marginally stable. Next, the stream function

('_i,_,z) and vortex-sheet displacement T(_ i,z) are determined

sequentially by iteration betweenequations (34) and (35). All nonlinear

terms are evaluated as products in physical space. The computed solutions

were tested against a perturbation solution for small _. The numerical

results (presented below) were obtained using AT=0.005,A_=O.OO5, with

the computational region limited to _5..

The vortex sheet in the region O<_<O.8, O<z<2x is shown in figure 2.

Its spanwise form is dominated by the second harmonic of the imposed

crossflow. Figures 3 and 4 showthe downstreamdevelopment of sheet

displacement f('_,z) and the spanwise velocity w(_,_=o,z) at several

intermediate stations. The steepening of the velocity profile is reminiscent

of the solutions to the inviscid Burger's equation which equation (35)

resembles. However, this equation also contains additional terms, due to

vortex-sheet displacement which reverses the steepening (about z = _) near

_=0.7. This can be seen more clearly in figure 5, which is a plot of the

derivative, a_/az. Once the steepening reverses, two symmetrically disposed

lobes emerge and continue to sharpen until the computations break down.

Figure 6 is a contour plot of a crossflow steam function _' defined

analogously to _, but based on the Cartesian variables _,_,y,z. The

vortices are attracted towards the z : • symmetry plane, and an induced

rotation opposite to that in the main flow appears close to the vortex sheet.

(Contours end on the vortex sheet because a curved sheet implies a non-zero

12



velocity in the crossflow plane.) These streamline patterns do not suggest

any obvious tendency for singularity formation or breakdown.

The breakdownoccurs near _=o.8. Calculations were repeated with the

number of spanwise nodes doubled successively from 32 through 512,

corresponding to increasing the highest resolved wavenumberfrom 16 to 256.

In all cases, the breakdownoccurs at somex=xs>O.8 with xs approaching 0.8

from above, monotonically, as the resolution improves. Moreover, the

breakdown occurs on the sheet and not at an interior point.

The route to singularity formation can be observed in the downstream

evolution of the spectrum of the solution. Figure 7 is the Fourier spei_rum,

_n(x,y=o), of the spanwise velocity profiles shown in figure 4. The

spectrum must exhibit exponential decay at large wavenumbers as long as the

function remains analytic, but energy transfers to higher wavenumbers, and the

decay rate decreases as _ increases. Near _= o.8, the exponential decay is

eventually lost, and the function is no longer analytic. The nearly periodic

oscillations in the high-wave-number component of the spectrum suggest that

the singularity initially forms at two spanwise locations, say z = ±L_ per

period. The interval An between successive minima in the spectrum is

approximately 16, suggesting that zs = _/16, which is approximately the

distance from the symmetry plane of the two minima in figure 5. The spectrum

does not seem to suggest that the oscillatory tail is due to spurious growth

at the highest wavenumbers.

13



3.2. Viscous layer

The viscous layer is driven by the tangential velocity over a distorted

vortex sheet. It is computedby an-adaption of the Keller-box scheme,z which

is used to march downstreamfrom the Lock profile. 2

!

The layer thickness is expected to grow, and the governing equations

(42)-(44) are rewritten in terms of the Blasius similarity variable _=Y/v_.

The box scheme allows arbitrary spacing in both _ and n and is second-order

accurate since the discretized equations are applied at the centers of cells

formed by the _-_ grid. The nodes were distributed so that the spacing

between nodes increases at a fixed rate towards the upper and lower edges nf

the viscous layer:

_J = ±h1(l -h_)/(l -h 2) (j = 1,2,...J*);

here hI = 0.005 and h2 = 1.05. The range -21 < _ < 13 corresponding to

J = llO and J÷ = I00 was found to be adequate for the inner solution to

smoothly reach its asymptotic boundary values. While spectral techniques were

used conveniently in the inviscid region, they become inordinately expensive

as the resolved spanwise wavenumber is increased beyond 32 (many genera]

matrices of the order of the maximum wavenumber need to be inverted), and

instead, second-order, ;inite-difference, upwind formulae were used in the

viscous solution. The symmetry of the external flow is imposed on the viscous

solution and, as is well known, the solution on the planes of symmetry,

z = 0,_, can be obtained independently of the solution in the region between

these planes. We therefore calculated the solution on the z = 0 symmetry

14



plane and obtained the solution on interior lines by marching from z : 0 to

z = _. Since the spanwise velocity Wremains positive everywhere in

0 < z < _, this can be carried out without iteration.

The external crossflow and its distortion of the vortex sheet cause the

flow to depart from the Lock profile, with the most noticeable changes being

the increase in layer thickness on the z = _ plane and the decrease on the

z = 0 plane. Figure 8 shows the increasing distortion of the streamwise

velocity profiles with increasing downstreamdistance. Figure 9 shows the

corresponding spanwise velocity profiles. Vector plots of the crossflow are

shownin figure 10. Note that the transverse velocity is O(ER)"I/z smaller

than the spanwise velocity. The pair of transverse jets (figure 10) at the

upper edge of the viscous layer correspond to the reversal in the steepening

of the spanwise velocity in figures 4 and 5. This follows from expanding the

inviscid solution in a Taylor series and using continuity to obtain

= 1 ÷..... ÷

4. Concluding Remarks

Plane mixing-layer flows, being inviscid!y unstable, have been observed

to rapidly break down and roll up into tightly wound spirals. Two-dimensional

mixing effectiveness is inadequate for many technological applications, and

three-dimensional mechanisms, such as spanwise roll-up, are sought to increase

mixing. In this paper, we show that the cumulative action of weak spanwise

vorticity in the external free stream can lead to an 0(1) distortion of the

15



mixing region• Since the vorticity, in our analysis, resides in the external

flow, it can be maintained over large streamwise distances without undergoing

viscous decay• The formation of an inviscid singularity in the solution

suggests, by analogy with studies of the similar Kelvin-Helmholtz problem,

that spanwise roll-up will ultimately occur in this flow.

Even though the analysis cannot be extended beyond the initial

singularity, it can still yield someuseful information about mixing by using

it to investigate the effect of the initial vorticity distribution on the

location of singularity formation• Early formation of the singularity should

lead to enhanced overall mixing.

The authors would like to thank Dr. Stephen J. Cowley of the Department

of Applied Mathematics and Theoretical Physics, University of Cambridge, for

his helpful suggestions about the singularity and Dr. Stewart Leib for

providing us with his computer program.
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